A Software Bus for Thread Objects

John Callaha#
Dehuai Li
Department of Statistics and Computer Science
Concurrent Engineering Research Center
West Virginia University

Abstract

We have implemented a software bus [1] fightweight threads in ambject-orientedprogramming
environment thaallows forrapid recofniguratiorandreuse otthreadobjects in discrete-evestmulation
experiments. While previous research in object-orienpadallel programming environments have
focused ondirect communicatiorbetweenthreads, our lightweighsoftware bus, callethe MNIBUS,
provides a means to isolate threads frdmir contexts of execution by restricting communications
betweerthreads to message-passing tiair local ports only. The software busnaintains aopology of
connections between theperts. It routes, queueand delivers messages accordingttos topology.
This approachallows for rapid reconfigurationand reuse ofthread objects inother systems without
making changes to thepecifications or source code. We present a layappdoach thaprovides the
needed transparency to developers, discuss example casgsgftthe M\iBus, and thevalue of bus
architectures in building and conducting simulations of discrete-event systems.

Catagory: research
Topic Areas: tools and environments, components and frameworks, concurrent systems

1 Introduction

Expressive programming languagesd run-timemechanisms argeeded to implement message-passing
architecturedetween processes parallel anddistributed computing environments. M@sbgramming
languages provide abstractions like procedure aatl method invocation to implement synchronous
communications between componentssiguential programs. In parallehd distributed computing
environments, however,ndirect and asynchronous mechanismare also needed to provide
communications betweemultiple, independently executing processes. Such mechapismst rapid

reconfigurations of systems since each component is highly independent of other processes.

Iplease contact John Rallahan, AssistarProfessor, Department of Statist@ad Computer Science,
West Virginia University, Morgantown, WV 26506-6330, Phone: 304-293-3607, Fax: 304-293-7541,
callahan@cs.wvu.edu. Thigork is supported by NASArantNAG 5-2129, NLM Grant NO1-LM-3-
3525, and ARPA Grant MDA 972-91-J-1022.

A software bug1] is an abstraction for distributexhd parallel programmingnvironmentghat provides

for indirect andasynchronous communications between processes. A software bus routes, queues, and
delivers messages between cliprdcesseandprovides astandardset of communication primitives to all

client processes. Each cligirbcess is viewed as a self-contained mothag¢owns aunique, local set of

"bus ports" on which itan sendandreceive messagesAll communication is performed on local ports

only. A busapplication consists of a set of clieptocessesand a"bus" that maintains a map of
connections between client ports. A message sent on port X of process A is delivaesiouisytoport Y

of process B ithe connection A.X- B.Y is part of thebus topology. Software bus systegtgre much

in common with event-based approaches,thatsoftware bus abstraction subsumes event-based models

by allowing more structured forms of interactidretween processes. Eveo# be simulated in the bus

topology by routing all send ports to all receive ports.

We have implemented a version of theLPLITH software bus follightweight threadshased on the
AWESIME [2] class library. The WESIME class library is implemented in C+and provides a parallel
programming environmerfor lightweightthreads in a single address space. ThreadswBsAE are
created as instances of derived subclasses of the ali$traatl class. Physical processen® simulated
by aCPUclassthat can contain thread instances. Thiieathnces are placed int®u instancesand the
CPU is started. At this point, eactpPu instance schedulemnd executedts threads until a termination
condition. There areseveral subclasses @PU (e.g., MiLTIFIFOMUX) and each subclass schedules

execution of its threads according to different scheduling algorithms.

Our implementation of a lightweigkbftware bus, callethe MNIBUS, provides a mechanism for indirect
andsynchronous communication betwedneads. Normally, WESIME threads communicate lojrectly
invoking methods of othefhread instances, through shared variables or by dineessage passing
primitives. This meanthat threads are highlgoupled totheir context of execution with other threads.
The systems inwhich theyare embeddedare noteasily reconfiguredand the threadthemselves not
reusable in other programs. In thenMus, threads areiewed as self-contained moduldst invoke
their own virtual methods to communicate through the software bus. These methodalateinstances
of the Threadsubclassand implementocal ports on which #éhreadmay sendandreceive messages. A
separate lightweight process actghasbus to routeandqueue messages betwdbreads. This approach
allows for rapid reconfigurationsand reuse of threads in other applicatiom®&causeindirect

communication eliminates any coupling between threads and shared variables.

Previous thread-basegarallel programming environmeritgased on object-oriented languages [3,4] have
focusedprimarily on direct communicatiortsetweerthreads in a fashion similar @SP [5] or an events
[6]. While this isuseful for some problemghe direct communicationbetweenthreads isusually

accomplished by addressing recipients explicitlytie source code othe sender. This approach,

however, couples component designs to edhbr. If the context oxecution changes, e.g., a different
receiverthread is used, the sendsource codemust be updated. Isome cases, message format
differencesthe use of broadcast or multicast of messagesl,changes to the numbers of threads means
that a number ofhanges areeeded to many threads as a resuthefhighdegree of coupling.Many
components must be reimplementegtause ofthanges to other componeatsd changes to the structure

of the system in which a component is embedded.

This papedescribeghe application programmers interface (API) of theukUs andshows howparallel
programs are constructed $oat reconfigurations have little or no impact on thpecification or
implementation of thread components. We illustrateeffectivenessand capabilities of the Musus in
building simulations by reusing components in several applicatodgapidly reconfiguring existing

applications with no effect on the source code of the thread components.

2 Overview

When two threads communicate directly with each other, epofitess must knowexactly what
mechanism the other thread uses to enable communication. The design of each thread is coupled to others
in a configuration. A software bus providestandardset of communication channdlsat allows each
thread to bdully encapsulated fronits context of execution, thus reducing templexity ofthe design
problem, and increasingcode independenceand reuse. In thesoftware bus model, #hread sends
messages tthe bus via local portsather thardirectly tothe intended receivers. Thesthenroutes the
message to its destination(s). There is no direct interabébweenthe sending and theeceiving

threads.

Figure 1 illustrates communicatiofetween processes in a software lpglication. Although the
processes execute independently, they all interact with the bus only through their local ports. Processes A,
B, and Cmay sendandreceive message only dimeir local ports. Thédus routes messages between ports
depending on a giveiopology ofconnections. Thitopology may behanged, connectiomsay be made

from a single port to multiple ports, and a single receive port can accept messages from multiple incoming
connections. Thebility to "rewire" an application is a major advantageths# software bus model.
Processexan be addedind removed from configurations, ofteduring system execution, without

changing the internal code of individual processes [7].

3 The MiNIBus Software Bus

In the AveESIME parallel programming environment, a thread islisicunit of parallelism. A thread is
an instance of a derived subclasstted C++ abstract clasehread . Developers create subclasses of

client threads

connection

software bus

Figure 1: Communication between processes through a software bus

Thread for eachtype ofapplication thread. Aypical application in AVESIME is composed of a set of
instances of classes derived frahe base clas3hread . Eachtype of derived class may be used to

instantiate any number of threads in the application

AWESIME doesnot provide a general mechanidor communication betweethreadsexceptthrough
direct method invocation, shared variables, and direct message passing. We have implesofiatacta
bus that provides an indirect, asynchronous communication mechabetmeenthreads. In the bus
model, an additiondevel of subclassing is needed to implement our approach. Figure 2 illustrates the
levels in a clashierarchy needed to construct a layered communications model basexbitnwaae bus.
The toplevel Thread class is provided ithe AWESIME package, application subclassesTbfead in
the middlelayer definethe specialized functionality of each thregge (i.e., the behavior of thread is
implemented in thislayer), and the interfacingclasses inthe bottom layerimplement low-level
communications with thbus. Local ports tthe busarespecified agpure virtual methods in application
class specificationthat areimplemented by interfacing subclass&hen a thread sendsnaessage, its
invokes one of itown virtual methodsvhoseimplementation is found in its interfacing subclas$his
approach allowsdevelopers ahigh degree of flexibility in substituting different communication
technologies athe interfacingevel while leavingthe applicatiorlevel threadcodeunchanged. Indeed,
during development of the IMBus we changed the bus API several times with little oeffect tothread

code in the application layer. We discuss the details of our layered approach in the next sections.

Thread

/\

,,,,, S application
Producer ’ Consumer Ipp
output input ayer
(pure virtual) (pure virtual)
interface
ProducerX output Bus input ConsumerX layer

- ~
P1 j (P2 j (c1 j (c2 threads
\ .

Figure 2: Layered approach to communications between threads via a software bus

3.1 The Thread Class

The abstract clasBhread is thebase class foall threads in an applicationMost of the details of the
Thread class are uninteresting to the casual user. All application threads must be instarsidsclatss
of classThread. Threads shouldnly be createdising the C++ew operator becausthe AWESIME
run-time environment manages thstacks on a dynamic heap. In addition, eaahclass of class
Thread should provide implementations to support three functions: a constructor, a destandtear,
main entry point function. First, eashibclass ofThread must support itewn constructothatcalls the
Thread constructor with initialization argument&econd, each subclassTdfread must implement a
destructorthat cleans up any data in the class instance. Finally, sabklass ofThread must
implement a function callethain defined as a virtual function ifhread . Themain function is the
entry point ofall threadscreated from the applicatiubclass. Whethe thread igxecuted fothe first

time, themain function is called by th€PUinstance that contains the thread.

3.2 The Application Classes

All application classes aerived fromthe classThread andform a level of abstract classestive class
hierarchy called the application laye€lasses irthis layer specifythe functional behavior of threads in
the application. Application classes must provide implementations for a constructor, destnectogin
functions. An application class specification must aigecifyall of its local sendand receive ports as

pure virtual functions.

In Figures 3and 4, weshow the specificationand implementatiorfor the Producer class. The
Producer constructor will intialize the pareithread class with a thread name, a maximum stizk

of 20000 words, a hardwamemory flag (HCCM)andset the priority of anyProducer threads equal
to theprocess identifier assigned tteem. Italso initializes the private member variabbkaxsend with

the maximum number of messages to produce. The implementationRwsbthecer::main method is
the mainloop of anyProducer thread instance. It senasaxsend number of messagemd then
terminates. Thenessageare sent by calling the pure virtual functioantput that has nassociated
implementation at this level @bove inthe class hierachy. Such functicare implemented isubclasses

of Producer in the interfacing layer.

3.3 The Interfacing Layer

The classes irthe interfacinglayer are derived from classes ithe application layer. The interfacing
classesare theconcrete classes from whighread instances are created. Eaohcrete class in the
interfacing layer implementhe virtual functions of its paremassthat represent the local ports of a
threadtype. Figures 5and 6 show the specificationand implementation of the interfacingass
ProducerX derived fromthe Producer application class. TReoducerX constructor invokes the
bus->init methodthat initializes the thread with tHeuisthread. The output implementation sends a

message to the bus process via the method

bus->write("output","I",NULL,NULL,i)

where the first argument "output” is the name of the local port and the second argument is a description of

thetypes ofdataobject passed ithe message (i.e., "I" standgr a single integer).The argumentgiven
NULL in this casecan beused to transfer port capabilitieéetweenthreads. Finally, th&alue of the

variablei is sent in the body of the message.

A Consumer subclass offhread and aConsumerX subclassan be constructed in a similar fashion.
In the case of a consumedhread, a call to a virtual functiomput within the mainloop of the
Consumer::main bodywill invoke the implementation ahput in a ConsumerX subclass. As in
the case othe ProducerX::output function, theConsumerX::input would be implemented by a

complementary call to receive a message via the method

bus->read("input”,"i",NULL,NULL,&r0)

thatreads the nextnessage othe localinput port of theConsumerX thread orblocks if the message

queue is empty. The second parameter obtlse>read function, as in théus->write function,

class Producer : public Thread {
int sent;
int max;
public:
Producer(char *name,int xpid,int maxsend);
~Producer();
void main();
virtual void output(int);

Figure 3: Producer abstract class specification

Producer::Producer(char *name,int xpid,int maxsend)
: (nhame,20000,HCCM,xpid)
{

max = maxsend;

}

void Producer::main()

for(int i=0;i < maxsend;i++) {
CERR_ALWAYS_PRE;
cout << "Produce " << i << endl;
CERR_POST;
output(i);

Figure 4: Implementation of Producer methods

class ProducerX : public Producer {
Bus* bus;

public:
ProducerX(Bus*,char*,int,int);
void output(int);

}

Figure 5: ProducerX concrete class specification

ProducerX::ProducerX(Bus* b,char* name,int xpid,int max)
: (name,xpid,max)

bus = b;
bus->init(this);

void ProducerX::output(int al) {
bus->write(this,"output","I",NULL,NULL,a1);
}

Figure 6: Implementation of output method for ProducerX class

represents the format of da&pected tgead. The data contained in tieeeived messadan integer) is
read into variable0 and returned as the result of the call to the virtual funatipat

Using this indirect approach to communicatlmetweenlightweight threads, the implementations of all
threads areompletely encapsulated frotheir context of execution. Thiaread applicatiortlasses can
be reconfigured and reused in new applications with no changes needed to their sources. All messages are

routed, queued, and delivered by the bus thread. Section 4 describes the implementation of the bus thread.

3.4 The main function

Figure 7 showsthe mainentry point forthe producer-consumer application. The C++ run-time
environment firsexecuteghemain function when the program starts. The program declares pointers to
two threadsfor the produceand consumerand thendeclares an instance BfultiFifoMux class (an
AWESIME subclass ofhe cpu abstract clasghat simulates multiple CPUs. thencreates a buthread

and adds thebus thread to thecpu instance. Next, the program creates thread instances of the
ProducerX andConsumerX classesindadds each thread instance to @fU. The bus->connect
methodthen adds &onnection to théus topology. This connection statethatany message sent by the
producer thread on its output port should be routed to the input port of the consumer thread. Finally, the
CPU instance is started via a call to fieeltUp method. Thecpu instance theriakes control of

program execution at this point until both of its threads have terminated.

4 The Awesime2Bus Bus

Thebusthread is created by timain program anéxecutes at higherpriority thanother threads in the
application. It functions much the same gzoatoffice with one major differemce: it collectaessages
andplacesthem into themailboxes (i.e.queues) of intended receivers, but routesmessages according
to its toplogy not an address associated with each message. This topology may change dydariigally
execution othe application. Theus provides methods fereating connectionisetweernthread ports as
well aswriting and readingvia local ports. The nextections describ¢éhe details oflow-level bus

operations.

main()

Thread* p,c;
MultiFifoMux cpu;

Bus bus = new Bus();
cpu.add(bus);

cpu.add(p = new ProducerX(bus,"Producer",1,10));
cpu.add(c = new ConsumerX(bus,"Consumer",1,10));
(void)bus->connect(p,"output"”,c,"input");
cpu.fireltUp(5,10000*4196);

}

Figure 7: Main entry point for the producer-consumer application

4.1 Writing to the Bus
The bus call used to send a message is
bus->write(thread , interface_name |, tape , ret , from , wi, Wo,..., Wp)

where thread is a pointer to the sending threabject, interface_nameis the name of an outgoing
interface tapedescribes the data types of valugs andret andfrom areused to transfer port capabilities
between threads. Port capabilities are used by threads to reply to messages received on ports with multiple
incoming connectionsAny threadmay write indirectly tathe port of another thread given dapability

by using NULL for the interface_nameargument andpecifying a non-NULL capability athe ret
argument. Using capabilities, tiseftware busan beused to implement procedure call semantics for

threads that act as servers to multiple client threads.

4.2 Reading from a named interface

In the simple situation when theredsly one interfacend its name i&nown, we caruse one bus call

each time to read a message on the interface. The call to read a message from a local port is
bus->read(thread , interface_name | tape , atape , cap, r 1,.... I'n)

wherethreadis a pointer to the receiving threatject,interface_names the name of the interfacape
describeghe types of variablesj, atapeis a copy othe sender's tape as given in bus->write that
originated the messagandcapis thecapability sent irthe bus->write call if given. The threadill
block at thebus->read call until a message arrives on the specified interface or proceeds immediately if

a message is already queued on the interface port.

4.3 Reading from any interface

In contrast to the situation where reading from named interfaces is applicablearthagplications in
which themessages must Ipgocessed as they comerggardless of the interfacHsey are received on.
In this case, the method

iface = (char*)bus->readselect(thread , atape , ret , buffer ,sizeof(buffer))

is used to receive messages on imepming local port wheréhreadis a pointer to the receiving thread
object,bufferis declared as a character array, fack is declared as a character pointer. The thvgkhd
block at the bus->readselect call until a message arrives on any interface, or wgtbceed
immediately if a message is already queued. Aftebus->readselect call is completethe buffer
will contain themessagandiface will point to the name of the interface where thessage arrived. To

pull the variables comprising the message flrfier, use

bus->readback(buffer , tape ,ret ,rj,.. rp)

wheretape describegshe message formaind eachrj is the address of a variable. Tie variable will
contain the return capability if provided in the originatings->write invocation.

4.4 Querying the Bus for Messages

A thread can avoid making a blocking readg read orbus_readselect) by first queryinghe bus
to find out if any messageme queued. To find ouhow many messagese queued on garticular
interface, the method

msgs = bus->query_ifmsgs(thread , interface_name)

is used wher¢hreadis a pointer to a threambjectandinterface_namas the name of an interface. The
bus->query_ifmsgs call returns the number of messages queued. It does not read any messages from
the interface, so it is generally followed bypas->read when one or more messages available. The

method

nmsgs = bus_query_objmsgs(thread)

is used to find ouhow many messagesequeued orall of the thread's interfaces. This method returns
the total number ofmessages queued ail interfaces. lidoesnot read any of these messages, so it is

generally followed by dus_readselect ~ when one or more messages are available.

10

A thread can also be notified if a message arrives on one of its ports by associating the port with a method

using the call

handle = bus->register(thread |, interface_name , method)

wherethreadis a pointer to a thread object ainterface_namés the string name of the local port. When
the message arrives otine port, theassociated method is invokedThe returned handlallows the
program to disassociatbe method from the local paduring execution usinghe bus->deregister
method. Using eitheread , readselect orregister , individual threads can eithese polling or

interrupts to process incoming messages.

4.5 Implementation

The MNIBuUs itself is implemented as a class from whimisinstances are created. For each incoming

port, thebus allocates a semaphore-protected queue Whioh bus->read and query messages can
access.Eachqueue is an instance tife AWESIME class loweRBOUNDEDFIFO that can contain &nite

number of messagesdallows mutually exclusive accessgimgle threads at a time. Since thescode

is reentrantany call tobus->write will enqueue a message at recipient quaes as determined by

the bus topology. Ithe queue is fullthe sending thread wiblock until a message is removed from the

gueue by the receiving thread. On the other hand, if a queue is empty and the receiving thread attempts to
read from the queue, it will block until a message is enqueued. The AwesimealasE8BbUNDEDFIFO

takes care of all synchronization on message queues.

Thebusthread has three taslenqueue messages, notigcipients,and maintain théopology. The bus
thread notifies other threadsly if there is a message on a port with a registered methodhriéad has
registered a method associated with an incoming porhusimterrupts the thread by calling thigethod

with the message. Otherwise, thesthreadonly enqueues messagasd maintains the&onnection

topology.

5 An Example

We present an example application in which theiBUs is used for communication betwetmeads: the
Dining Philosophergroblem. Theproblem involvesthe use ofparallel threads thately on message
passing. The Dining Philosophgrsoblem is a classic synchronizatiand resource allocation problem
and similarsolutionscan readily be constructéabm this one for other synchronization problems. We
present thesource code foour solutionand discuss our approach tbe dining philosophergproblem

using the MNIBuUS.

11

5.1 The Dining Philosopher's Problem

Our solution to thalining philosophergroblem involvesN philosophers around a table lfchopsticks
and a sharetowl of rice. Philosophers neddio chopsticks teeat, thusonly | N/2| philosophers can
eat at one time. Thproblem is to orchestrathe actions of the philosophers @void deadlock. For
example, if all philosophergrabbedheir left chopstick firstandrefused to release uintil they acquired
the right chopstick, then the entire table of philosophers would deadlock. This leads to starvation. If each
philosopher picks up one chopstielad puts it down if it findsthe other chopsticlbusy, then the

philosophers might livelock. Again, this leads to starvation.

In our solution, each philosopher determines whigh chopsticks tceat with based oiits assigned
process identifieand continues acycle of eating and thinkindor a fixed number of mouthfulsEach
philosopher first tries to acquite/o chopsticks, eats a mouthfugturns thechopsticks tahe table, and
thinksfor a moment while chewingeforerepeating theycle. We define aapplication clas®hil as a
subclass offhread and aTable class to manage the chopsticks. Figugh8wsthe class definition
and implementation oflassPhil . ThePhil class constructor passistialization arguments to the
Thread class in which eacRhil instance is given the same name. The constrtivéor changes the
thread name to an explicit nantmsed on an identifier number passedthe thread, using the
Thread::name method. Other variables arelso initialized including the instance variable
mouthfulls that is used to keeprack of total consumption of rice by the philosopher. The
Phil::main member function is the starting point for any thread instance offhalss and itspecifies
the actions of each philosopher. Each philosopher threadfoldiv an identical cycle: (a) get two
chopsticks; (b) eat a mouthful; (8turn thechopsticks tdhe tableand(4) think. Step (2)specifiesthat

two chopsticks are acquired but contention is resolved iffdbke thread.

The virtual functionsgetChopsticks and returnChopsticks in the application claskhil are
implemented in the interfacing clasBhilX shown in Figure 9. The member function
getChopsticks uses abus->write call to request theise of two chopsticksepresented by two
integersx andy, on the interface port name "getChopsticks". A capability is created and passed along via
the capability argument so that theeceivercan respond to the sender indirectly. Since an explicit
confirmation of the request isecessary beforthe philosopher caproceed toeat, abus->read call
blocksthe philosopher until eeply is receivedthe reply has noassociatediata). The pair cfommands
bus->write/bus->read implements procedure call semantics by blockimgl a returnmessage
granting therequest arrives. In contrast, the member functieturnChopsticks conducts

asynchronous communication because it only ugesawrite call to release the two chopsticks.

12

The Table thread acts as @sourcemanager in the application. Itesourcesare N chopsticksand it
knows which chopsticks are available at any given time in ordgratgtpermission to or hold requests to
use chopsticks. Figure 10 shotim specificationand implementation of th&able application class.
The mainmember function continuously calls member functigetRequest and getRelease to
process incoming messages. Table thread willfollow the cycle: (1) listen to thebus for request or
release messages; (2) take appropriate actions according to the message that isardéBjesendback

a messaggrantinguse of chopsticks if it is a requestd therequest can be meght away. In steg3),
the call to the virtual functiomrantChopsticks takes the result of thgetRequest call as an
argument. This is anpaque variabléype that contains return informatiomeeded inthe interfacing

layer.

Figure 11 showshe specificationand implementation of the interfacietassTableX . In thiscase, the
virtual functionsgetRequest and getRelease are not implemented with simpleus->read
operations whichwould block execution ofthe Table thread. Instead, the methobdus-
>query_ifmsgs is used to query for messages on an intertaefere reading. This approach
implements a polling scheme. If a message is not pres@iseacondition igeturned to the callezlse

the incoming capability is caste into an opaqtype (e.g., a pointer to an integer) and returned to the

caller in the application layer.

Figure 12 illustrates the applicatiomsin functionthatsets uphe systemsandconnections between the
philosopher threads instancasd theTable thread instance. First,\ector of pointers to philosophers
threads is declared. Next, aiNVBus and cpu are createcind thebus is added t¢he cpu instance.
Instances of the philosopheaad thetable threadare thercreatedandadded to thepu. At this point,
connections betweethread interface ports are added to thes topology. Finally, the fireltUp
member function is invoked dhe cpu to start the things going. Thsslution to thedining philosophers
problemcan be reconfiguredasilywith additional philosophers without changes to s$pecification of

any application thread class or its implementation.

5 Discussion

We have usethe MNIBus environment to build simulations of several discrete esgstiemsncluding

the leader election problem, antomobile cruise-control system, a simple avionics guidance, control and
navigation platform, a thermostatic contsylstem, a satellitesimulation, and draffic light system. In
each case, ware able adjusthe numbers of threadsetweenruns of the simulationand change the

topology dynamically if necessary.

13

class Phil : public Thread {
int pid;
char nameBuffer[128];
int mouthfulls;
int nphils;
public:
Phil(int,int);
virtual void getChopsticks(int,int);
virtual void returnChopsticks(int,int);
void main();

}

Phil::Phil(int xpid,int max,int n) : (“"Philosopher",50000,HCCM)
{

pid = xpid,;

sprintf(nameBuffer,"Phil-%d",xpid);

name(nameBuffer);

mouthfulls = max;

nphils = n;

}
void Phil::main()

int i,next=pid % nphils + 1;
CERR_ALWAYS_PRE;
cerr << name() << " using chopsticks " << pid << "," << next << endl;
CERR_POST;
for(i=0;i < mouthfulls;i++) {
getChopsticks(pid,next);
CERR_ALWAYS_PRE;
cerr << name() << " eats" << end|;
CERR_POST;
returnChopsticks(pid,next);

Figure 8: Application class specification and implementation for a philosopher thread

class PhilX : public Phil {
Bus bus;
public:
PhilX(Bus b,int pid,int max,int n):(pid,max,n) {bus = b; bus->init(this);}
void getChopsticks(int,int);
void returnChopsticks(int,int);

}

void PhilX::getChopsticks(int a,int b)
Capability cap;
bus->capability(this,"getChopsticks",&cap);

bus->write(this,"getChopsticks","II",NULL,&cap,a,b);
bus->read(this,"getChopsticks",NULL,NULL,NULL);

Figure 9: Interfacing layer class specification and implementation for philosopher threads

14

class Table : public Thread {
int nchops;
Array* chopsticks;
public:
Table(int);
virtual int getRequest(int*,int*);
virtual void grantChopsticks(int,int,int);
virtual int getRelease(int*,int*);
virtual int terminate();

}
Table::Table(int size) : ("Table",50000,HCCM)

chopsticks = new Array(size);

nchops = size;

for(int i=0;i < size;i++) {
(*chopsticks)[i] = AVAILABLE;

void Table::main()

int x,y,r;

int count = nchops;

while((count -= terminate()) {

if((*chopsticks)[(int)queuel.front()]==AVAILABLE &&
(*chopsticks)[(int)queue2.front()]==AVAILABLE) {

x = (int)queuel.front(); y = (int)queue2.front();
grantChopsticks((int)queueret.front(),x,y);
gueueret.deq(); queuel.deq(); queue2.deq();
(*chopsticks)[x] = UNAVAILABLE;
(*chopsticks)[y] = UNAVAILABLE;

if(r = getRequest(&x,&y)) {
if((*chopsticks)[x]==AVAILABLE && (*chopsticks)[y]==AVAILABLE) {
grantChopsticks(r,x,y);
(*chopsticks)[x] = UNAVAILABLE;
(*chopsticks)[y] = UNAVAILABLE;
}else {
queueret.enq(r); queuel.enq(x); queue2.enq(y);

}
if(getRelease(&x,&y)) {
(*chopsticks)[x] = AVAILABLE; (*chopsticks)[y] = AVAILABLE;

Figure 10: Application class specification and implementation for a table thread

class TableX : public Table {
Bus bus;
public:
TableX(Bus b,int size) : (size) { bus = b; }

}
int TableX::getRequest(int* x,int* y)
{ Capability* cap;
if(bus->query_ifmsgs(this,"getRequest")) {
bus->read(this,"getRequest","ii",NULL,cap,X,y); return cap;
} else return O;

}

TableX::grantChopsticks(int cap,int x,int y)
bus->write(this,NULL,"II",cap,NULL,X,y);

}

TableX::getRelease(int* x,int* y)
if(bus->query_ifmsgs(this,"getRelease")) {

bus->read(this,"getRelease","ii", NULL,NULL,x,y); return 1;

} else return 0O;

}
Figure 11: Interfacing class specification and implementation for a table thread

15

main()

Thread* phil[NPHILS] table;
MultiFifoMux cpu;

Bus* bus = new Bus();

cpu.add(bus);

cpu.add(table = new TableX(bus,NPHILS));

for(int i=0;i < NPHILS;i++) {
cpu.add(phil[i] = new PhilX(bus,i,10,NPHILS));
(void)bus->connect(p[i],"getChopsticks" table,"getRequest");
(void)bus->connect(p[i],"returnChopsticks" table,"getRelease");
(void)bus->connect(p[i],"terminate”,table,"terminate");

}
cpu.fireltUp(5,10000*4196);

Figure 12: Main function for dining philosophers application

For example, consider a sample solution to the leader elgetbiem consisting of four identical threads
T1, T2, T3, and T4. All threads acennected together inrang topology. All threads start by flipping a
coin to decide if ituns. If a threadlecides taun, it sends itprocess identifier tthe next thread in the
ring, else it doesothing. Each thread thewaits for messages shifted betwekreads to arrive from the
previousthread in the ring andompares theeceived value tdhe maximumvalue received so far
including its own value if it had decided torun. If the received value igreaterthan thecurrent
maximum, the thread saves the vadunel passes it tohe next thread. If theeceived value ismaller, the
threaddoesnothing. It continues thigrocedure for N shifts where N tise total number of threads. At
the end of thiprocess, eactihread should contain the same maximwatueand its printutthis result.
We can create momomplex configurations dhe leader election solution by changing tbeology, the

yielding method, and the number of rounds.

6 Summary

Our research group built the lightweigdttftware bus as a testbed fanningexperiments on simulations

of parallel, discrete-event systems. TheilBus approach allows developers of discrete-event simulations

to more easily reconfigurandreuse components in a wide variety of configuratiombis capability is

often needed in experimerttsat mustrun many differenttypes ofsimulations. In conjunction with the
AwesIME library, we can adjust the humber @PUs,the scheduling algorithms, thgueue sizes, and

other parameters in order to evaluate simulation performance. The bus approach also allows developers to
monitor anddebugparallelsystems bysplicing” components along connectiotizatwatch themessages

between threads.

16

We are using the splicing technique to introduce monitoesdetermine whether or not the behavior of
the system is correcwvith respect to formal specifications. Bgtaching monitors to connections with
assertions concerning ordering of message eventsaméest whethegxecution patternare legal. This

method is similar to code annotations [8], but we have extended it to a softwrae bus environment.

Finally, wedevelopedhelayered approach in order to distribtiteeads across actual physipabcessors
without the needor source codehanges. It ipossible to replacéhe interfacingclasses with the
distributed version of tholylith software bus withounaking changes to the applicatispecifications

and implementations. There still exissome limitations to distribution, but our goal is torovide
developers with the ability to reconfigure their systems in distributed environments without major changes
to their components. To achiethés goal, we haveased a codgenerator to produdée interfacindayer
codeautomatically from interface specifications written in a modular interconnection language (MIL) [9].
The application's main entry function that creates the Cpu, thr@adispnnections caalso be generated

from MIL specifications. We continue to expldiés mechanism as a means of increasingléxability

and reuse of discrete-event simulations.

7 References

[1] Purtilo, J., Polylith: An Environment to Support Management of Tool Interfaces, ACM
SIGPLAN Symposium on Language Issues in Programming Environments, Seattle, WA, June
25-28 1985, pp. 12-18.

[2] Grunwald, D., User's Guide to A Widely Extensible Simulation Environment, University of
Colorado, Boulder Technical Report.

[3] Notkin, D., Proxies: A Software Structure for Accommodating Heterogeneity, Software Practice
and Experience, April 1990, Volume 20, Number 4, pp. 357-364.

4] Magee, J. and J. Kramer, Constructing Distributed Systems in Conic, IEEE Transactions on
Software Engineering, June 1989, Volume 15, Number 6, pp. 663-675.

[5] Hoare, C.A.R., Communicating Sequential Processes, Prentice Hall, Englewood Cliffs, NJ, 1985.

[6] Garlan, D., G. Kaiser, D. Notkin, Using Tool Abstraction to Compose Systems, IEEE Computer,
June 1992, Volume 25, Number 6, pp. 30-38.

[7] Hofmeister, C. R., Dynamic Reconfiguration in Software Buses, University of Maryland
Computer Science Department, August 1993.

[8] Belz, F.and D.Luckham, A new approach to prototyping Ada-based hardware/sofsystems.
In Proceedings of the ACM Tri-Ada ConferenBaltimore, MD, December 1990.

[9] J. Callahan and J. Purtilo, A packaging system for heterogeneous execution envirolriénts,
Transactions on Software Engineeriduine 1991, Volume 17, Number 6, pp. 626-635.

17

18

